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Abstract. Crystalline orbitals of diamond, silicon and germanium have been calculated using
the linear combination of atomic orbitals–self-consistent-field method as implemented in the
CRYSTAL 95 program. The calculations have been carried out to the Hartree–Fock and density
functional levels of theory with two formulations of the exchange–correlation potential correcting
the electronic density.

The static and room temperature structure factors and charge densities have been deduced
and compared with the available experimental data and other calculations. The effects of the
exchange and correlation potentials are evaluated and the change of the charge density is discussed
in connection with the thermal motion.

1. Introduction

Diamond, silicon and germanium are typical covalent crystals in which each atom is linked
tetrahedrally to four neighbouring atoms. Their electronic structure has been accurately refined
in crystallography over the past two decades using the x-ray Pendellosung-beat method on large
single crystals. High-quality structure factors are available, particularly for silicon where 31
reflections have been investigated covering a large range of(sinθ)/λ values. Nowadays, they
are used to test validly the reliability and accuracy obtained by different schemes of calculation.
In diamond and germanium, only ten low-order reflections have been investigated leading to
a deterioration of the factor of agreement between theory and experiment with respect to that
obtained for silicon.

To have access theoretically to charge densities in solid-state physics,ab initiocalculations
have become common only recently. Most use density functional (DF) schemes [1] in con-
junction with the plane-wave (PW) basis set technique. One of them is implemented in the
program WIEN [2] which is widely distributed and has been used very recently to calculate
and compare successfully with experiment the structure factors and charge density of silicon
[3]. Other ab initio calculations use the Hartree–Fock (HF)–linear combination of atomic
orbitals (LCAO) computational scheme whose the most general implementation is given in the
program CRYSTAL [4]. The most recent version of this program (CRYSTAL 95) [5] contains
a DF option which permits one to take into account to some extent correlation effects through
an exchange–correlation potential.

In this work, CRYSTAL 95 has been used to calculate the static and room temperature
structure factors and charge densities of diamond, silicon and germanium at the HF and DF
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levels of theory. They represent an archetype of covalent bonding and it is important to
explore the trends of its characteristics when we descend this column of the Periodic Table.
Several reasons can be put forward for the choice of diamond, silicon and germanium. As
already indicated, the series of the group IV elemental semiconductors can be considered by
theorists as one of the best experimental references for electronic structure. This family is very
homogeneous, with the same structure (face-centred-cubic lattice with the space groupFd3̄m).
The symmetry is high and the unit cell contains only two atoms. This allows us to impose severe
computational conditions ensuring high numerical accuracy in HF calculations. Extended all-
electron basis sets can be used and the sophisticated one of silicon shows the quality of the
HF structure factors [6] obtained with CRYSTAL. They are accurately optimized to reproduce
well experimental ground-state properties such as geometry, bulk modulus, cohesive energy,.

The aim of this study is:

(i) to extend the HF calculations of Pisaniet al [6] made on silicon to diamond, germanium
and to DF schemes not available at that time;

(ii) to compare the results of our calculations to both experimental data and other calculations
using non-local basis sets [3, 7] in place of localized functions centred on atoms used in
the LCAO method;

(iii) to analyse the differences of the electronic structure deduced from the HF and DF schemes
and the effects of the thermal motion on the charge density of each compound.

2. Computational details and theoretical background

2.1. Computational details

2.1.1. The ab initio program. For the present calculations, the CRYSTAL 95 computer
program [5] has been used. We refer the reader to a previous paper [8] for a description of
the periodic LCAO self-consistent-field computational scheme as implemented in such a code.
The CRYSTAL 95 code contains a density functional theory option that permits us to solve
self-consistently the Kohn–Sham (KS) equations. The exchange–correlation (XC) potential
is expanded in an auxiliary basis set of symmetrized atom-centred Gaussian-type functions
(GTFs). In this work, one local and one non-local XC potential have been used. The local
potential is indicated by LP: L for LDA (exchange) [9] and P for Perdew–Zunger (correlation)
[10] and the non-local or generalized gradient approximation (GGA) potential is indicated by
PW for Perdew–Wang (exchange and correlation) [11]. The standard computational conditions
for the evaluation of the Coulomb and exchange series, as defined in reference [8], have been
used and ensure high numerical accuracy. As regards the reciprocal-space net, a shrinking
factorS = 8 has been used corresponding to 29k-points where the Fock matrix is diagonalized.

2.1.2. Basis sets. As regards the basis sets, Bloch functions are constructed from local
functions (atomic orbitals) which, in turn, are linear combinations (contractions) of GTFs
expressed as the product of a Gaussian and a real solid spherical harmonic.

The carbon basis set [12] can be denoted as a 7-31(1d)G contraction (the first shell is
of s type and is a contraction of 7 GTFs, then there are two sp shells and one d shell): it is
well adapted to describe the carbon in a tetrahedral structure. The Si and Ge basis sets are
8-841(1d)G and 9-7631(6d,1d)G, respectively. The Si basis set has already been described by
Pisaniet al [6] in the study of the electronic properties of silicon while the Ge basis set has been
communicated by Dovesi [12]. The exponents of the most diffuse sp and d shells of each atom
have been optimized by searching for the minimum Hartree–Fock crystalline total energy
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at the experimental geometry; the following values have been obtained: C: (αsp = 0.309,
αd = 0.808); Si: (αsp= 0.129,αd = 0.493); Ge: (αsp= 0.155,αd = 0.561). The same basis
sets have been used for the calculations performed with the DF schemes.

2.2. Theoretical background

The static electron densityρ0(Er) generated by the CRYSTAL code is given by

ρ0(Er) =
∑
Eg

∑
µ,ν

P
Eg

0,µνχ
0
µ(A, Er)χ Eg∗ν (B, Er) (1)

whereχ0
µ(A, r) is theµth AO on atom A(rA) in the origin cell,χgν (B, r) is theνth AO on atom

B(rB) in the crystal cell associated with the translationg-vector andP Eg0,µν is the corresponding
element of the density matrix.

The method of the calculation of the staticF0(Es) and dynamicFT (Es) structure factors from
ρ0(Er) has already been reported [13]. The main features of this method can be summarized as
follows:

(a) The static structure factor which is the Fourier transform of the unit cellρ0(Er) is expressed
according to

F0(Es) =
∑
Eg

∑
µν

P
Eg

0,µνI
Eg
0,µν(Es) (2)

whereI Eg0,µν(Es) is the static scattering matrix.
(b) When the atomic vibrations described by the experimental atomic mean square dis-

placement tensors〈u2〉ij and treated within the Debye hypothesis are taken into account,
the dynamic structure factors are obtained. The expression is formally identical to that
for F0(Es):

FT (Es) =
∑
Eg

∑
µν

P
Eg
T ,µνI

Eg
T ,µν(Es) (3)

where the element of the dynamic density matrixP EgT ,µν is expressed as

P
Eg
T ,µν = P Eg0,µν

I
Eg
0,µν(Es = 0)

I
Eg
T ,µν(Es = 0)

. (4)

The dynamic scattering matrixI EgT ,µν(Es) includes two types of term. The first ones cor-
respond to couples of orbitalsµ, ν centred on the same atom A withBA,xx = 8π2〈u2

A〉xx :
I
gx
T ,µν(sx) = I 0

0,µν(sx)e
−(1/2)BA ,xxs

2
x (5)

wheresx is thex-component of the scattering vector. They are the block-diagonal elements
corresponding to the Debye–Waller correction. The second ones constitute the off-block-
diagonal elements of the matrix. Their expression is given by

I
gx
T ,αTx β

T
x
(sx) =

(
αTx

α

)n+1/2(
βTx

β

)m+1/2

I
gx
0,αTx βTx

(sx) (6)

with

αTx =
α

1 + 2αBA,xx
βTx =

β

1 + 2βBB,xx

whereα andβ are exponents of GTFs belonging to orbitals centred on A and B atoms.
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3. Results and discussion

3.1. Static structure factors and charge densities

The static structure factors have been calculated from equation (2) at the HF, LP and PW levels
for the experimental geometries:a(C) = 3.5670 Å,a(Si) = 5.4307 Å anda(Ge) = 5.6579 Å.
The values given in tables 1, 2 and 3 are reported for one atom of the cell:

f0(hkl) =


F0(hkl)

8
for h + k + l = 4n, 4n + 2

F0(hkl)

4.21/2
for h + k + l = 4n + 1.

Table 1. The static atomic scattering factorf0 of diamond calculated at the HF, LP and PW levels.
The lattice parameter isa = 3.5670 Å. The experimental values have been listed by Spackman
[14] (B = 0.140 Å2). See the text (section 2) for the definition of the HF, LP and PW symbols.

hkl f0(HF) f0(LP) f0(PW) f0(exp)

111 3.287 3.294 3.299 3.274
220 1.940 1.967 1.967 1.963
222 0.131 0.100 0.103 0.149
311 1.667 1.700 1.699 1.699
331 1.568 1.558 1.560 1.563
333 1.373 1.376 1.377 1.386
400 1.560 1.569 1.570 1.559
422 1.444 1.441 1.443 1.455
440 1.329 1.324 1.326 1.308
444 1.133 1.127 1.130 —
511 1.396 1.392 1.394 1.411
531 1.283 1.279 1.282 —
533 1.195 1.187 1.191 —
551 1.103 1.097 1.100 —
553 1.020 1.015 1.018 —
555 0.889 0.883 0.887 —
620 1.224 1.218 1.221 —
642 1.051 1.045 1.049 —
660 0.910 0.905 0.909 —
664 0.796 0.791 0.795 —
711 1.100 1.094 1.098 —
731 1.023 1.017 1.021 —
733 0.950 0.945 0.949 —
751 0.887 0.882 0.886 —
753 0.830 0.825 0.829 —
800 0.977 0.971 0.975 —
822 0.910 0.905 0.910 —
840 0.850 0.845 0.849 —
844 0.746 0.742 0.745 —
880 0.587 0.583 0.587 —
911 0.829 0.824 0.827 —

For diamond, the experimental atomic scattering factors are listed by Spackman [14]. They
come from the room temperature structure factors of Takamaet al [15] obtained on synthetic
crystals with the Pendellosung technique to which the 222 reflection measured by Weiss and
Middleton [16] has been added. The fit of these data with respect to Dawson’s model [17] gives
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Table 2. The static atomic scattering factorf0 of silicon calculated at the HF, LP and PW levels.
The lattice parameter isa = 5.4307 Å. The experimental structure factors are taken from the
consolidated set of Cummings and Hart [18] and the Saka and Kato [19] set and corrected for
the harmonic thermal factorsB = 0.4668 Å2 [3] (a) andB = 0.4632 Å2 [14] (b). See the text
(section 2) for the definition of the HP, LP and PW symbols.

f0(exp)

hkl f0(HF) f0(LP) f0(PW) (a) (b)

111 10.742 10.720 10.727 10.729 10.728
220 8.651 8.663 8.659 8.657 8.656
222 0.203 0.135 0.151 0.191 0.191
311 8.012 8.036 8.031 8.023 8.020
331 7.268 7.205 7.222 7.251 7.247
333 6.415 6.398 6.406 6.432 6.427
400 7.460 7.440 7.448 7.453 7.449
422 6.725 6.686 6.698 6.721 6.716
440 6.060 6.025 6.036 6.052 6.046
444 4.983 4.959 4.966 4.987 4.979
511 6.459 6.423 6.435 6.443 6.438
531 5.822 5.793 5.803 5.818 5.812
533 5.290 5.261 5.270 5.282 5.275
551 4.818 4.795 4.802 4.815 4.807
553 4.412 4.393 4.399 4.427 4.419
555 3.761 3.749 3.753 3.769 3.760
620 5.477 5.450 5.459 5.472 5.465
642 4.556 4.536 4.543 4.563 4.555
660 3.871 3.856 3.861 3.875 3.866
664 3.356 3.345 3.349 3.354 3.345
711 4.813 4.792 4.799 4.807 4.799
731 4.413 4.395 4.400 4.410 4.402
733 4.064 4.047 4.053 4.076 4.068
751 3.762 3.748 3.752 3.768 3.760
753 3.501 3.490 3.494 3.510 3.501
800 4.188 4.172 4.177 4.185 4.176
822 3.871 3.856 3.861 3.871 3.862
840 3.596 3.583 3.587 3.595 3.586
844 3.147 3.138 3.141 3.144 3.135
880 2.537 2.531 2.533 2.544 2.533
911 3.504 3.492 3.495 3.517 3.508

the harmonic thermal factorB = 0.140 Å2. The dispersion, nuclear scattering and anharmonic
(β) corrections are negligible. It can be noted that the Spackman’s values (column 5 of table 1)
are very similar to those listed by Luet al [7] (B = 0.1379 Å2, β = 0).

The most complete data set of experimental structure factors of silicon at room temperature
has been listed by Zuoet al [3]. This list contains 31 reflections taken from the consolidated
set of Cummings and Hart [18] and that of Saka and Kato [19]. The observed structure factors
were corrected for nuclear scattering (fN = 0.0038e) and for anomalous dispersion using
experimentally derivedf ′-values [20]. The values given in column 5 of table 2 come from
the list of Zuoet al [3] after correction for the harmonic thermal factor (B = 0.4668 Å2 [3],
values (a) of table 2, andB = 0.4632 Å2 [21], values (b) of table 2). It is noted that the
effect of the anharmonic thermal vibration is ignored because theβ-value is very uncertain:
Deutsch [22] deduces an upper limit ofβ (0.7 eV Å−3) from an x-ray measurement analysis
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Table 3. The static atomic scattering factorf0 of germanium calculated at the HF, LP and PW
levels. The lattice parameter isa = 5.6579 Å. The experimental values come from the Matsushita
and Kohra [24] and Deutsch, Hart and Cummings [26] data sets after correction for the anomalous
dispersion and for the thermal motionB = 0.5654 Å2 [7] (a) andB = 0.548 Å2 [28] (b). See the
text (section 2) for the definition of the HF, LP and PW symbols.

f0(exp)

hkl f0(HF) f0(LP) f0(PW) (a) (b)

111 27.483 27.493 27.491 27.894 27.883

220 23.680 23.652 23.656 23.766 23.740

222 0.124 0.092 0.095 0.152 0.152

311 22.217 22.167 22.173 22.142 22.109

331 19.524 19.408 19.421 19.482 19.432

333 17.338 17.244 17.255 17.300 17.237

400 20.408 20.312 20.324 20.235 20.191

422 18.096 17.992 18.004 18.040 17.981

440 16.244 16.157 16.168 16.198 16.128

444 13.501 13.447 13.455 13.498 13.410

511 17.348 17.250 17.262 —

531 15.643 15.564 15.574 —

533 14.244 14.183 14.191 —

551 13.092 13.043 13.050 —

553 12.132 12.092 12.097 —

555 10.628 10.604 10.608 10.680 10.572

620 14.739 14.671 14.680 —

642 12.471 12.428 12.434 —

660 10.874 10.847 10.851 —

664 9.722 9.705 9.707 —

711 13.095 13.046 13.052 —

731 12.128 12.090 12.095 —

733 11.317 11.287 11.291 —

751 10.629 10.604 10.608 —

753 10.045 10.025 10.028 —

800 11.606 11.573 11.578 —

822 10.875 10.848 10.852 —

840 10.253 10.232 10.235 —

844 9.267 9.253 9.255 —

880 7.975 7.969 7.970 —

911 10.045 10.025 10.028 —

while β = 3.38 eV Å−3 is obtained from the room temperature neutron 222 reflection [23].
For germanium, three accurate data sets are available. They come from experiments of

Matsushita and Kohra (MK) [24], Takama and Sato [25] and Deutsch, Hart and Cummings
(DHC) [26] made on single crystals. The measured structure factors were corrected theor-
etically for anomalous dispersion depending on wavelength. The critical analysis of these
data made by Luet al [7] shows that the best accuracy corresponds to the MK and DHC
measurements. We follow this analysis and give in the column 5 of the table 3 the values of the
dynamic structure factors reported by Luet al [7] corrected for the harmonic thermal factor
(B = 0.5654 eV Å2 [7], values (a), andB = 0.548 eV Å2 [27], values (b) of table 3). It is
noted that these values do not take into account the anharmonic factorβ. That is justified since
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the corresponding term exp(−Ta) with

Ta =
(

2π

a

)3 〈u2〉3
kBT

βhkl

(where the symbols have their usual meaning) contributes only 0.2% (Ta = 2.24× 10−3 K)
of thef0(h = k = l = 5) value withβ = 0.9 eV Å−3 [7].

3.1.1. Comparison with experiment.The unweighted factor of agreement

R =
∑∣∣f0(exp)− f0(theor)

∣∣/∑ f0(exp)

which represents the overall extent of agreement with experiment is given in table 4 for the
three models of the calculation. This table shows that the theory–experiment agreement is
very satisfactory, especially in the case of silicon when the calculations are made at the HF-
and PW-corrected DF levels. For silicon, the quality of the agreement is slightly affected by
theB-value which changes only the high-order reflections. The HF structure factors compare
very well with experiment especially when the high-order reflections are considered (table 1).
When the theoreticalf0-values are obtained from DFT, the agreement deteriorates especially
in the case of the LDA-corrected DFT scheme. This is due to a less satisfactory description
of the high-order reflections and also to a significant deterioration of the low 222 reflection.
This last result looks surprising and will be discussed further. The overall agreement obtained
for diamond and germanium is less satisfactory than for silicon. It does not depend on the
scheme of calculation. In diamond, the structure factors are rather robust with respect to the
B-value [14] and the small values of the structure factors are in part responsible for this result.
Low-order reflections (220 and 311 in the HF approach or 111 and 222 in the DFT scheme)
also contribute to the deterioration of theR-value. In germanium, the 111 and 222 reflections
are not well reproduced with the three methods of calculation. An expansion of the Ge basis
set can improve these two structure factors affected by the valence electrons, but before doing
this, it would be important to have more experimental reflections.

Table 4. The factor of agreement (R%= |f0(theor)− f0(exp)|/∑ f0(exp)) between theory and
experiment. The values in parentheses are from Zuoet al [3] for silicon and from Luet al [7] for
diamond and germanium. See the text (section 2) for the definition of the HF, LP and PW symbols.

HF LP (LDA) PW (GGA)

Diamond
B = 0.140 Å2 [14] 0.96 0.94 0.92

(0.94)

Silicon
B = 0.4668 Å2 [3] 0.15 0.42 0.29

(0.24) (0.13)
B = 0.4632 Å2 [22] 0.18 0.31 0.18

(0.24) (0.14)

Germanium
B = 0.5654 Å2 [18] 0.53 0.54 0.52

(0.43)
B = 0.548 Å2 [28] 0.73 0.45 0.48

(0.59)
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3.1.2. Comparison of Hartree–Fock and density functional results.Comparison of the HF
f0-values (column 2) with the DF ones (columns 3, 4) of tables 1, 2, and 3 shows that the
behaviour of the low-order reflections differs from that of the high-order ones.

For thehigh-order reflections, the DF formalism calculatesf0-values smaller than the HF
ones: the difference is larger with LDA (LP) than with GGA (PW). In the case of diamond,
the relative difference

1 = |f0(DF)− f0(HF)|/f0(HF)

oscillates around a mean value of 0.2% whereas it increases regularly with the decrease of
(sinθ)/λ in silicon and germanium. These factors which are dominated by core electrons are
deemed to be better described at the HF level. The loss of accuracy in the calculation of the
exchange part of the potential in DF schemes with respect to the HF approach is responsible
for this result. The1 difference is greater in Si and Ge than in diamond and related to the
number of core electrons and to their belonging to different shells.

For thelow-order reflectionsalso influenced by the valence electrons, comparison of HF
and DF factors is not so easy. Generally speaking, one expects that DFT which takes into
account a part of the electronic correlation is better adapted to describe these reflections than
the HF approach in which correlation is fully omitted. If one considers the 222 reflection
which is the most important signature of covalent bonding of the group IV solids, that is not
verified. No definitive conclusion can be given to account for this surprising result, but a few
ideas from other calculations will be examined to clarify this situation for the future. Firstly,
in the DFT scheme, the XC potential introduced in the one-electron Kohn–Sham operator is
approximated according to a local or gradient correction of the electronic density. From the
point of view of the energy, the weight of the correlation part is calculated to be one order of
magnitude (or more) smaller than the exchange part. That is also valid for the charge density as
shown by Zunger and Freeman [28] for diamond from a self-consistent method used to solve
the local density formalism. It is therefore likely, as for the high-order reflections, that the loss
of accuracy of the calculation of the exchange part in DFT with respect to the HF approach
is not compensated by the introduction of a part of the electronic correlation. To verify this
assumption, it is possible now to make with CRYSTAL hybrid calculations by mixing the
exact exchange with the correlation taken into account for a LDA or GGA model. Secondly, it
is recalled that the basis sets are optimized for the experimental geometry with respect to the
HF calculations and kept equal in DF calculations to compare more easily the performances
of the two approaches. However, Pisaniet al [6] have shown thatf0(222) for silicon is rather
sensitive to the quality of the basis set. In these conditions, the basis set could be optimized at
the DF level and the consequences for the valuef0(222) examined.

HF and DF charge densities have also been calculated to compare the results of the two
approaches. The difference (HF–(PW)DF) charge-density (DCHD) map represented on the
110 plane (figure 1) shows similar results for each compound. The symmetry localizes the
bond charge at the mid-point of the chemical bond. At this point, HF theory calculates a charge
density greater than that of DFT which decreases regularly from 0.10 (diamond) towards 0.02
(germanium) through 0.05 (silicon) e Å−3. There also appears a negative DCHD behind each
nucleus along the [111] direction. The positive DCHD around the bond mid-point can be
related to the positive difference (HF–DF) of the 222 structure factor. As for structure factors,
this positive DCHD is attributable to the fact that, going from the HF to the DF scheme, the
charge density is more decreased by the exchange effect than it is increased by the correlation
one [28]. The difference map also shows the large anisotropy of the valence charge deformation
which has a very diffuse character in the direction perpendicular to the bond. Most of these
features also occur in the deformation maps given in figure 3—see later.
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(a)

(b) (c)

Figure 1. The differences between the static HF- and PW-corrected DF charge densities. Full,
dashed and dotted–dashed curves indicate positive, negative and zero charge density. The step
between two consecutive isodensity curves is 0.002 au for diamond (a) and silicon (b) and 0.001 au
for germanium (c).

3.1.3. Comparison with other calculations.Numerous calculations of structure factors and
charge densities using different methods and approximations have been reported on the C, Si
and Ge series. The results of most of them have already been discussed and compared with
the recent ones obtained using the LAPW (LDA or GGA) technique [3, 7]. Here, we limit
ourselves to comparing the results from the LAPW [3, 7] and LCAO methods which differ
especially in the nature of the basis sets.

The data of table 4 show that both LAPW and LCAO methods lead to an overall agreement
with experiment which is very satisfactory and of same quality for diamond and germanium
according to theB-value used. The two methods applied to silicon also indicate that the
gradient-corrected DF scheme is better than the LDA one. However, for a given XC potential,
the experimental structure factors of silicon are better reproduced at the LAPW level even if
the difference as regards the LCAO structure factors is very small in the PW–DF scheme.

More precisely, the examination of each reflection (tables 1, 2, 3) shows that the LCAO
method calculates structure factors that are systematically smaller than those obtained by the
LAPW method at the LDA and GGA levels. This result is valid for each compound. The
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five highest-order reflections of diamond provide the only exception to this rule. However,
the relative LDA or GGA deviation between LAPW and LCAO structure factors remains very
small even for the high-order reflections. For example, one reflection for Ge (555), three
reflections for Si (664, 844, 880) and two reflections for C (440, 511) have a deviation higher
than 0.5%. Of course, the near-zero value of the 222 structure factor leads to a much larger
deviation (10% for C and Si (GGA) and 20% for Ge and Si (LDA)). Given that most of the HF–
LCAO structure factors are higher than the LDA or GGA–LAPW ones, the negative differences
between the (LDA or GGA) DF–LCAO and corresponding LAPW structure factors are clearly
attributable to an approximate evaluation of the exchange potential in DF schemes. The exact
calculation of the exchange potential is of primary importance for obtaining the best structure
factors in the LCAO method. As already indicated, the use of a hybrid (HF exchange and LDA
or GGA correlation) potential in the KS operator will allow one to analyse more appropriately
the correlation effects and the comparison between localized (AO) and unlocalized (PW) basis
functions to reproduce better the structure factors of the elemental semiconductors. Without
these calculations, it can be recalled that in LAPW and LCAO first-principles calculations,
similar parameters (number of specialk-points in the Brillouin-zone integration, maximum
angular momentum for the radial wave functions, plane-wave cut-off (LAPW) or truncation
criteria for bielectronic Coulomb and exchange series (LCAO)) determine, after optimization,
the accuracy of the results and therefore the convergence of the property. However, the most
important parameter used in the two methods is the number of basis functions in which the
wave functions are expanded and which limits the size of basis sets. In this work, the numbers
of basis functions (atomic orbitals) are 28, 36 and 54 per unit cell for diamond, silicon and
germanium, respectively. The reader wishing to appreciate the changes of properties of the
ground state of silicon with the number of basis functions is referred to the work of Pisaniet al
[6]. From this study, it appears that the best values of HF structure factors are obtained from
the basis set:

(1) where the core electrons are described after reoptimization of core functions carried out
for an isolated atom,

(2) where a polarization d function is included (but it is noted that the splitting of the polar-
ization function results in worse agreement with experiment),

(3) where a relatively diffuse sp GTF† is included,
(4) where adding ‘ghost’ functions at the bond mid-point has no marked effects, contrary to

expectation.

These four criteria have been considered for silicon but for diamond and germanium it is
necessary to have more numerous experimental reflections before one can validly test any of
them.

In summary, the correlation effect is better described in structure factors calculated from
the LAPW method than from the LCAO method. Before concluding that the PW basis functions
are better adapted than AO basis functions for these calculations, it has to be noted that the XC
potential has been fitted in this work according to a predefined ‘even-tempered’ auxiliary basis
set of 8s-type GTFs. Improvement can be obtained with the use of general auxiliary basis sets
which are typical for each atom but which are not available at present.

3.1.4. The crystal-field effect.The deviations of the crystal atomic scattering factors and
charge densities from those calculated for the free atoms are given in figures 2 and 3,
respectively, for the HF approach. To obtain the free-atom wave function, one sp shell has

† It has to be noted that including a diffuse sp GTF, which is not necessarily variationally optimized, limits the
computational capabilities of CRYSTAL.
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Figure 2. The difference(1f0) between the static atomic scattering factor calculated at the HF
level for the bulk and the free atom versus(sinθ)/λ.

been added to the crystal basis set and the exponents of the most diffuse sp shells have been
reoptimized. In figure 2, only thef0 − f0(free atom) differences corresponding to the 111,
222, 220 and 311 reflections deviate appreciably from the zero line. The positive difference
associated with the 111 reflection expresses the deformation of the electron cloud along the
[111] direction while that of the 222 reflection describes the asphericity of the charge density.
The largest deformation of the valence electron cloud is observed for diamond while silicon
presents the largest asphericity of the charge density. The negative differences corresponding
to the 220 and 311 reflections can be explained by the ‘pole’ deformations of crystalline orbitals
in comparison to the free state according to Dawson’s model [17] applied to the site symmetry
(4̄3m: Td) of the atom. These last features have already been described by Spackman on
the basis of the electron distribution in diamond [14] and silicon [21]. Figure 3 reports the
map of the deformation of the charge density with respect to the free state on the (110) plane
which contains the chemical bond. As expected from the Fourier sum of the experimental
f0 − f0(free atom) differences [14, 21, 27] and from theoretical results [7, 29], these maps
give all of the main features of the electronic structure of the crystalline chemical bond and
confirm the results deduced from the crystal atomic scattering factors. In the three cases, there
is a large build-up of electronic charge along the bonds but the bond charge is much more diffuse
in silicon than in diamond or germanium. The deformation of the charge density of diamond
is elongated more along the C–C bond, whereas in silicon and germanium, the elongation is
perpendicular to the bond. The lack of p core electrons in diamond allows the valence electrons
to get nearer the nucleus: this is connected to a monotonic decrease of the total charge density
from the atomic position to the mid-point of the bond, whereas in Si and Ge the total charge
density is nearly constant (see for example reference [7]). The observed peaks at the bond
mid-points and the deficits behind the nuclei along the [111] direction are 0.42 and−0.22 e Å−3

for C, 0.21 and−0.11 e Å−3 for Si and 0.11 and−0.07 e Å−3 for Ge. These results compare
very well with the experimental data: 0.41 and−0.19 e Å−3 for C [14], 0.21 and−0.09 e Å−3

[21] or 0.22 and−0.07 e Å−3 [22] for Si and 0.17 and−0.05 e Å−3 for Ge [27]. They also
confirm and improve very slightly on the accurate results of recent calculations obtained from
the all-electron LAPW implementation of the local density formalism (0.45,−0.13 e Å−3) for
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(a)

(b) (c)

Figure 3. Deformation maps of the static electron charge density on the 110 plane calculated at
the HF level. Full, dashed and dotted–dashed curves indicate positive, negative and zero charge
density, respectively. The step between two consecutive isodensity curves is 0.01 au for diamond
(a) and 0.004 au for silicon (b) and germanium (c).

C [7], (0.18,−0.10 e Å−3) [7] or (0.189 e Å−3) [3] for Si and (0.13,−0.05 e Å−3) for Ge
[7] or the Perdew–Wang 91 generalized gradient approximation (PW91 GGA) (0.194 e Å−3)
for Si [3].

3.2. Thermal motion effects

The room temperature scattering factorsfT have been calculated using the equations (3) to (6)
with the harmonic factors given in section 3.1. The values are given in tables 5, 6 and 7 for
diamond, silicon and germanium, respectively. They are not very different from those deduced
from the Debye–Waller expression. This indicates that the off-block-diagonal elements of the
dynamic scattering matrix (equation (6)) are very small with respect to the block-diagonal ones
and that the orbital overlapping coming from different atoms is negligible at this temperature.

In order to show accurately the effects of the thermal motion, the dynamic HF charge
densities have been calculated for each compound. The difference between room temperature
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Table 5. The room temperature atomic scattering factorfT of diamond calculated at the HF, LP
and PW levels according to equation (3) withB = 0.140 Å2 [14]. See the text (section 2) for the
definition of the HF, LP and PW symbols.

hkl fT (HF) fT (LP) fT (PW)

111 3.259 3.267 3.271
220 1.896 1.922 1.922
222 0.129 0.099 0.101
311 1.615 1.647 1.645
331 1.489 1.479 1.481
333 1.273 1.276 1.278
400 1.491 1.500 1.500
422 1.351 1.348 1.350
440 1.217 1.212 1.214
444 0.993 0.987 0.990
511 1.296 1.291 1.294
531 1.165 1.161 1.164
533 1.062 1.055 1.058
551 0.958 0.953 0.956
553 0.867 0.862 0.865
555 0.723 0.718 0.722
620 1.096 1.091 1.094
642 0.901 0.896 0.899
660 0.747 0.742 0.746
664 0.624 0.621 0.624
711 0.956 0.951 0.954
731 0.869 0.864 0.868
733 0.790 0.786 0.789
751 0.721 0.717 0.720
753 0.660 0.656 0.659
800 0.819 0.814 0.817
822 0.747 0.742 0.745
840 0.682 0.678 0.681
844 0.573 0.569 0.572
880 0.413 0.410 0.413
911 0.660 0.656 0.659

andT = 0 charge densities is deduced and given in figure 4. As expected, the deformation of
the charge density is very small and affects especially the electron distribution along the [111]
direction. The thermal motion of the atoms decreases the charge density around the nucleus
but also in the bond area for silicon and germanium, making the valence charge more diffuse.
However, in silicon, a very slight increase in charge density can be observed along the Si–Si
bond showing ‘bond’ peaks of only 1.10−3 e Å−3 slightly shifted from the bond mid-point
towards the nuclei. The thermal motions of silicon and germanium are therefore very similar
as also indicated by their close values of the harmonicB-factor. In the case of diamond, the
difference between room temperature andT = 0 charge densities remains positive throughout
the valence area. This result is different from that obtained for silicon and germanium but,
as in silicon, it shows ‘bond’ peaks of 610−3 e Å−3 slightly shifted towards the nuclei. The
thermal motion in diamond seems to include at room temperature several atoms closely linked.
This allows us to understand better the small value of theB-factor with respect to those of Si
and Ge which would be attributable to a large bond charge density and to its delocalization
along both the short C–C bond and around the nucleus.
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Table 6. The room temperature atomic scattering factorfT of silicon calculated at the HF, LP
and PW levels according to equation (3) withB = 0.4668 Å2 [3]. See the text (section 2) for the
definition of the HF, LP and PW symbols.

hkl fT (HF) fT (LP) fT (PW)

111 10.615 10.593 10.600
220 8.381 8.393 8.389
222 0.195 0.131 0.145
311 7.672 7.696 7.691
331 6.744 6.685 6.702
333 5.767 5.752 5.760
400 7.004 6.986 6.993
422 6.118 6.082 6.094
440 5.343 5.310 5.321
444 4.124 4.104 4.110
511 5.808 5.774 5.786
531 5.070 5.045 5.054
533 4.464 4.440 4.448
551 3.940 3.921 3.926
553 3.496 3.480 3.486
555 2.796 2.787 2.790
620 4.676 4.654 4.661
642 3.651 3.635 3.641
660 2.912 2.901 2.906
664 2.370 2.362 2.366
711 3.935 3.917 3.924
731 3.496 3.480 3.486
733 3.121 3.106 3.106
751 2.800 2.786 2.785
753 2.523 2.513 2.511
800 3.254 3.240 3.239
822 2.914 2.901 2.900
840 2.622 2.611 2.610
844 2.154 2.146 2.144
880 1.530 1.525 1.521
911 2.525 2.515 2.513

4. Conclusions

New LCAO–SCF calculations using both HF and LDA- or GGA-corrected DF schemes have
been reported for diamond, silicon and germanium; these were carried out to obtainT = 0 and
room temperature structure factors and charge densities. The agreement with experiment is
very satisfactory and of similar quality to that obtained recently with the LAPW method. The
best agreement is obtained with the Hartree–Fock approach. This is particularly attributable to
the contribution of high-order reflections. In density functional theory where the gradient (PW)
correction of the electronic density reproduces the experimental structure factors better than
the local correction, the improvement of HF low-order structure factors is not as expected. On
the contrary, the low 222 reflection which is the most important signature of covalent bonding
in these semiconductors has been deteriorated. The DF–LCAO structure factors are smaller
than those calculated within the HF approach. They are also systematically smaller than the
corresponding LAPW ones. The exact calculation of the exchange potential, as done in the HF
approach, is therefore of primary importance even for low-order reflections more sensitive to
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Table 7. The room temperature atomic scattering factorfT of germanium calculated at the HF, LP
and PW levels according to equation (3) withB = 0.5654 Å2 [7]. See the text (section 2) for the
definition of the HF, LP and PW symbols.

hkl fT (HF) fT (LP) fT (PW)

111 27.126 27.134 27.132
220 22.856 22.830 22.833
222 0.123 0.091 0.094
311 21.159 21.112 21.118
331 17.955 17.848 17.860
333 15.391 15.307 15.317
400 19.014 18.925 18.936
422 16.278 16.184 16.195
440 14.105 14.030 14.039
444 10.923 10.880 10.886
511 15.399 15.312 15.323
531 13.405 13.337 13.345
533 11.781 11.731 11.737
551 10.452 10.414 10.419
553 9.351 9.320 9.324
555 7.632 7.615 7.617
620 12.359 12.297 12.304
642 9.739 9.706 9.711
660 7.913 7.894 7.896
664 6.592 6.581 6.582
711 10.456 10.417 10.422
731 9.347 9.318 9.322
733 8.421 8.397 8.400
751 7.633 7.616 7.618
753 6.963 6.950 6.951
800 8.750 8.725 8.729
822 7.914 7.895 7.897
840 7.202 7.188 7.189
844 6.066 6.057 6.058
880 4.532 4.529 4.529
911 6.964 6.950 6.952

the correlation effects. Next, hybrid calculations taking into account both exact HF exchange
and correlation parts of the potential will have to be carried out to confirm this conclusion.

Both DF–LAPW and LCAO methods calculate with an excellent accuracy the exp-
erimental structure factors of elemental semiconductors. However, the use of the plane-wave
basis functions is very slightly better adapted than the localized atomic orbitals basis set in the
density functional approach to describe this property. In spite of this, all of the main features
are well reproduced, such as the confirmation of the low 222 DFT value which looks basis
set independent. At this stage, it is noted how a similar study extended to other (insulator,
molecular,. . . ) compounds would be useful to generalize these results and to confirm the trend
of the HF approach giving better structure factors than the DF schemes.

In charge-density maps, the HF approach enhances the calculated bond charge around
the bond mid-point with respect to the DF scheme. It reports more accurately the valence
charge deformation in the form of the values of the build-up of charge at the bond mid-
point and of the deficit of charge occurring behind each nucleus along the [111] direction.
The room temperature structure factors calculated within our orbital model are very close to
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(a)

(b) (c)

Figure 4. The thermal motion effect. The differences between the room temperature and static
bulk HF charge densities. Full, dashed and dotted–dashed curves indicate positive, negative and
zero charge density, respectively. The step between two consecutive isodensity curves is 0.0001 au
for diamond (a), silicon (b) and germanium (c).

those obtained with the Debye–Waller formula. The overlapping between orbitals centred on
different atoms is therefore negligible. The charge density of diamond, both around the atom
and along the chemical bond, is larger at room temperature than atT = 0. With respect to
those in silicon and germanium, the thermal motion in diamond is different. It seems to involve
more than a single atom, as both the large charge density along the C–C bond and the small
value of theB-factor also indicate.
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